Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407153

RESUMO

Background: Using a variety of chemical compounds and biomolecules, researchers have been working on new antidiabetic drugs for many years. Anti-diabetic research is increasingly using nanomaterials because of their unique qualities, such as their tiny size, biocompatibility, and ability to penetrate cell membranes for drug delivery. Using extract of T. couneifolia coated with silver nanoparticles as a model for diabetes mellitus research was one of the goals of this work. Methods: Uv-Vis spectroscopy was used to measure the TAgNPs surface plasmon resonance. FTIR spectroscopy confirmed the attached functional groups, XRD analysis confirmed the size and crystallinity, scanning electron microscopy revealed that the majority of the particles were spherical, and EDX performed the elemental analysis. For 21 days, alloxan-induced diabetic Wistar rats (N = 25, n = 5/group) were administered 10 mg/kg body weight of photosynthesized AgNPs as a standard animal model, while those in the untreated normal control group C, received distilled water as a control, diabetics who were treated with 0.5 mg/kg of body weight of glibenclamide, 10 mg/kg of methanolic T. couneifolia extract, and diabetics who were given 10 mg/kg of body weight of synthetic AgNPs derived from T. couneifolia in the DAgNPs group. At the conclusion of the treatment, lipid, liver and kidney profiles were re-examined to determine whether or not the treatment had been effective (day 21). Oral glucose doses of 2 g/kg of body weight were administered to each group, and blood glucose levels were measured at various intervals (day 21). Fasting glucose levels were measured using a glucometer. Each animal's urine was tested for leukocytes, nitrites, and bilirubin using lab-made prepared assay kits. One-way ANOVA and Dunnett's test were used for statistical analysis. Results: The surface plasmon resonance effect was examined with UV-vis, it showed a sharp peak at 412 nm. X-ray diffraction measurements indicated that the produced nanoparticles were between 15 to 31.44 nm in size. Alloxan-induced diabetic rats were fed AgNPs derived from phytosynthesized AgNPs, compared to diabetic control rats, diabetic rats treated with AgNPs showed a considerable improvement in their dyslipidemia status. Over the course of the days, it also lowered blood glucose levels. A reduction in blood glucose levels, a rise in body weight, and significant improvements in the lipid, liver, and renal profiles were also seen. Conclusions: The present findings revealed that plant mediated silver nanoparticles significantly improved the alloxan induced diabetic changes in various treated rats and might be used for the treatment of diabetes.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269321

RESUMO

Background: Type-2 diabetes mellitus (T2DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective and green synthesised nanoparticles (NPs) as a medicinal therapy in the treatment of T2DM is an attractive option. Aim: The present study aimed to evaluate the anti-diabetic potential of the phyto-synthesised silver nanoparticles (AgNPs) obtained from Phagnalon niveum plant methanolic extract. Methods: The green synthesised AgNPs made from Phagnalon niveum plant methanolic extract were analysed by Ultraviolet-Visible (UV-Vis) spectroscopy, and the functional groups involved in the reduction of the silver ions (Ag+) were characterised by Fourier Transform Infrared (FTIR) spectroscopy. The size and crystallinity were assessed via X-ray Diffraction (XRD). The morphology of AgNPs was confirmed using Scanning Electron Microscopy (SEM). The amount of silver (Ag) was estimated via energy dispersive X-ray (EDX) analysis. An intraperitoneal injection of 200 mg alloxan per kg albino Wistar rats' body weight, at eight weeks old and weighing 140-150 g, was used to induce diabetes mellitus (N = 25; n = 5/group). Group C: untreated normal control rats that only received distilled water, group DAC: diabetic control rats that received alloxan 200 mg/Kg body weight, DG: diabetic rats treated with glibenclamide at 0.5 mg/kg body weight, DE: diabetic rats that received methanolic P. niveum extract at 10 mg/Kg body weight, and DAgNPs: diabetic rates that received AgNPs synthesised from P. niveum at 10 mg/kg body weight. The blood glucose levels were monitored on days 0, 7, and 14, while lipid, liver, and kidney profiles were checked after dissection at the end of treatment (day 21). On the final day of the period study (day 21), an oral glucose tolerance test was carried out by administering orally 2 g/kg body weight of glucose to the respective groups, and the blood glucose level was checked. A fasting glucose level was measured using a glucometer. Urine samples were collected from each animal and analysed using lab-made assay kits for glucose, bilirubin, pH, leukocytes, and nitrite, among other factors. For statistical analyses, a one-way ANOVA and Dunnett's test were applied. Results: The green-mediated synthesis of AgNPs using P. niveum methanolic extract produced spherical and mono-dispersed NPs with a size ranging from 12 to 28 nm (average: 21 nm). Importantly, a significant reduction of blood glucose levels and an increase in body weight, as well as a remarkable improvement in lipid, liver, and kidney profiles, were noticed. Conclusions: The biosynthesised AgNPs significantly improved the abnormalities in body weight, urine, and serum levels, indicating that it is a promising anti-diabetic agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...